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1. Introduction

If ongoing and planned experiments discover direct or indirect departures from the Stan-

dard Model (SM), the next step will be to understand what kind of new physics is involved.

Detailed predictions for flavour changing neutral currents processes in supersymmetry play

a crucial role in this program. In particular, flavour mixing induced by sfermion mass

matrices is a pure supersymmetric effect with no analogue in the SM and constitutes in

general the bulk of SUSY contributions to neutral meson mixings. These processes provide

in turn one of the most sensitive guideline for reconstructing the structure of SUSY soft

breaking terms. Ultimately, this information will allow us to discriminate among the many

possible mechanisms for SUSY breaking that have been proposed in the literature.

In this paper we present the next-to-leading order (NLO) strong interaction correc-

tions to gluino-mediated ∆F = 2 box diagrams in the Minimal Supersymmetric Standard

Model (MSSM). We obtain the NLO Wilson coefficients of the effective Hamiltonian rele-

vant for neutral meson mixings. We adopt the mass insertion approximation [1] which is

phenomenologically motivated and permits a compact presentation of the results for the

Wilson coefficients.

The complete expressions of the Wilson coefficients at the NLO are collected in ap-

pendix A, where the results are presented in the MS-DRED renormalization scheme. In
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eqs. (4.7)–(5.2) and (4.8)–(5.10) we provide the formulae required to translate the Wilson

coefficients to the MS-NDR and RI-MOM schemes. The relations between the strong cou-

pling constant and the squark and gluino masses in the MS-DRED and NDR schemes are

given in eq. (A.3).

At the LO, strong interaction contributions to ∆F = 2 processes are described in

SUSY by the gluino mediated box diagrams represented in figure 1. These diagrams have

been computed in refs. [2]–[3]. NLO corrections to ∆F = 2 processes in the SM have

been computed in ref. [4] and are available for the chargino contributions in the MSSM [5]

and for the Two Higgs Doublet Model [6]. Both chargino and gluino contributions have

been then computed in [7] in the MSSM with minimal flavour violation. The anomalous

dimension matrix for the complete set of four-fermion operators entering the effective ∆F =

2 Hamiltonian has been evaluated at the NLO in QCD in refs. [8, 9].

This paper completes the NLO determination of the effective Hamiltonian by com-

puting the initial conditions for the Wilson coefficients at the high-energy supersymmetric

scale. Besides the general argument that initial conditions are needed to obtain scheme-

independent results and to achieve NLO scale invariance, our calculation is strongly mo-

tivated by two additional considerations. First, the LO coefficients generated by gluino

exchange are proportional to α2
s. Without the NLO computation of matching conditions,

it is not possible to specify the scale and scheme for the strong coupling, resulting in

an uncertainty of the LO result much larger than in ordinary weak-interaction processes.

Second, the new ∆F = 2 operators generated by gluino exchange have surprisingly large

anomalous dimensions, so that there is a large scale dependence that can only be removed

by adding the NLO corrections to the matching (see eq. (5.4)). We consider two different

regularization schemes for ultraviolet (UV) divergences, namely the naive dimensional reg-

ularization (NDR) and the dimensional reduction (DRED). Infrared (IR) divergences are

treated both with a gluon mass (in the NDR and DRED schemes) and with dimensional

regularization (in DRED). The main achievement of the NLO determination is a strong

reduction of the high-energy scale dependence of the Wilson coefficients compared to the

LO, typically from about 10-15% to few percent. Applications of our calculation are studies

of Bd,s− B̄d,s, D− D̄ and K− K̄ mixings. Preliminary results for the Bd− B̄d mixing case

have been given in ref. [10] and a complete phenomenological analysis will be presented in

a forthcoming paper.

The plan of the paper is the following. In section 2 we introduce the effective Hamil-

tonian approach and the basic formulae used in the matching procedure at the NLO. In

section 3 we discuss the calculation in the full theory (the MSSM) both at the LO and

at the NLO. The latter represents the main result of the paper. We give details of the

calculation and address in particular the issues related to the role of evanescent operators

in the matching. In section 4 we present the calculation in the effective theory. The results

for the Wilson coefficients are discussed in section 5 together with the consistency checks

between results obtained in the different UV and IR regularization schemes and the scaling

under the renormalization group equation. Finally, in section 6, we draw our conclusions.

The complete expressions of the Wilson coefficients, both at the LO and at the NLO, are

collected in appendix A
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2. Effective Hamiltonian for ∆F = 2 processes

The effective Hamiltonian for ∆F = 2 processes in the presence of new physics can be

written in terms of eight independent four-fermion operators,

H∆F=2
eff =

5∑

i=1

CiOi +
3∑

i=1

C̃i Õi , (2.1)

where Ci are the Wilson coefficients and we adopt the following basis for the local operators

Oi

O1 = d̄iγµL b
i d̄jγµL b

j ,

O2 = d̄iPL b
i d̄jPL b

j ,

O3 = d̄iPL b
j d̄jPL b

i ,

O4 = d̄iPL b
i d̄jPR b

j ,

O5 = d̄iPL b
j d̄jPR b

i . (2.2)

The operators Õ1,2,3 are obtained from O1,2,3 by the exchange L ↔ R. The left- and

right-handed projectors are defined as PR,L = (1±γ5)/2 and γµR,L = γµPR,L; i, j are colour

indices. In eq. (2.2) and in the following we specialized for definiteness on the effective

Hamiltonian which describes B̄d − Bd mixing. In the case of Bs, D and K mixings, the

replacements {d, b} → {s, b}, {d, b} → {u, c} and {d, b} → {d, s} should be considered

respectively.

The evaluation of the coefficients of an effective Hamiltonian involves the following two

steps:

1. calculating the amplitude in both the full and the effective theory and determining

the Wilson coefficients by matching the two amplitudes at the high energy scale;

2. evolving the Wilson coefficients from the high- to the low-energy scale where the ma-

trix elements of the local operators can be computed with non-perturbative methods,

primarily lattice QCD calculations.

Step 1 depends on the theory under consideration. The new result of this paper is the

computation of the full theory amplitude in the MSSM up to the NLO in the strong

interactions. As far as step 2 is concerned, the NLO anomalous dimension of the effective

Hamiltonian in eq. (2.1) has been calculated in ref. [8] and the result confirmed in [9].

We now recall the general formulae necessary to perform the matching between the

full and the effective theories at the NLO.

The renormalized amplitude in the full theory can be written in the form

Afull =
∑

i

(
F

(0)
i +

αs
4π
F

(1)
i

)
〈Oi〉(0) , (2.3)

where 〈Oi〉(0) are the tree level matrix elements of the operators Oi and F (0) and F (1)

represent the LO and NLO contributions respectively. Note that, in the case of the ∆F = 2
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SUSY transitions considered in this paper, both F (0) and F (1) contain an additional factor

α2
s not factorized out in eq. (2.3). It is also worth recalling that, in order to properly

normalize the physical amplitude, the external quark fields considered to compute the

amplitudes should be renormalized with their on-shell renormalization constant, defined as

the pole residue of the quark propagator. In the calculation performed in this paper the

external fields, as well as the strong coupling constant, renormalize differently in the full

(MSSM) and in the effective theory, and this gives a finite contribution to the matching.

In particular, one loop corrections to the quark propagator in the full theory include a

squark-gluino loop as well as a quark-gluon loop, whereas only the latter appears in the

low-energy effective theory.

It is convenient to express also the NLO renormalized amplitude in the effective theory

in terms of tree-level matrix elements of local operators,

Aeff =
∑

i

Ci〈Oi〉 =
∑

i,j

Ci

(
1 +

αs
4π
r
)
ij
〈Oj〉(0) . (2.4)

By equating the full theory amplitude in eq. (2.3) with the effective one given in eq. (2.4)

one obtains the expression for the Wilson coefficients at the NLO,

Cj = F
(0)
j +

αs
4π
F

(1)
j − αs

4π

∑

k

F
(0)
k rkj . (2.5)

The functions F (i) and r depend in general on the external states. In our calculation we

have chosen massless external quarks with zero momenta. Though this choice considerably

simplifies the calculation of the two-loop diagrams in the full theory, it also introduces

IR divergences in both the full and effective theories, in particular in F (1) and r. These

divergences cancel in the Wilson coefficients. Particular care, however, must be taken

when regularizing IR divergences in dimensional regularization. In this case, the matrix

r contains 1/ε poles that give finite contributions to eq. (2.5) once combined with both

O(ε)-terms entering F (0) and contributions to F (0) of evanescent operators. In particular,

the summation index k in eq. (2.5) must run in this case over both the physical and

the evanescent operators, whose specific definition will be given in the next section. The

evanescent operators which are needed instead to define the renormalization scheme of

four-fermion operators within dimensional regularization are discussed in section 4.

3. Calculation in the full theory

We now describe the NLO calculation of the Wilson coefficients for ∆F = 2 transitions

mediated by strong interactions in the MSSM. We will discuss in turn the computation

of all the elements entering the r.h.s. of eq. (2.5): the determination of the LO and NLO

amplitudes in the full theory, F (0) and F (1), is discussed in this section; the calculation of

the amplitude in the effective theory, expressed by matrix r, will be discussed in section 4.

As mentioned before, having chosen external quarks with zero masses and momenta,

the bare amplitudes in both the full and effective theories present UV as well as IR diver-

gences. To regularize both of them we have adopted three regularization setups:
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• DRED, with a gluon mass λ as IR regulator (DRED-λ);

• DRED, to regularize both UV and IR divergences (DRED-d);

• NDR, with a gluon mass λ (NDR-λ).

The calculation is performed in the mass insertion approximation [1] which is phenomeno-

logically motivated and allows a more compact presentation of the final results. In order

to fix the notation, we recall here the basic formula of the mass insertion approximation

which provides the expansion of the squark mass matrix in the flavour basis around its

mean diagonal value,

(Z†)ik(M2
D)k(Z)kj = (M2)ij = M2

s

(
1 +

∆

M2
s

)

ij

= M2
s (1 + δ)ij . (3.1)

The matrices Z and MD are the squark mixing and mass matrix respectively in the mass

eigenstate basis; M is the squark mass matrix in the super-CKM basis ( q̃1
L q̃

2
L q̃

3
L q̃

1
R q̃

2
R q̃

3
R );

Ms is a mean squark mass, as defined for example in [3]; ∆ij (δij) are the dimensionful

(dimensionless) mass insertions between squarks of flavour i and j. We treat MS as the

usual mass parameter in the Lagrangian and the δ’s as interaction terms. We then expand

the ∆F = 2 amplitude up to the second order in the δ’s, which provides the first non-

vanishing contribution in the mass insertion approximation.

3.1 LO calculation up to O(ε)

The amplitude of ∆F = 2 transitions via strong interactions at the LO in the MSSM

receives contribution from the four box diagrams represented in figure 1 for the Bd − B̄d
mixing case.

We denote the diagrams in the first and second row of figure 1 as A-type and B-type

diagrams respectively and we will extend this notation to the analogous topologies entering

at the NLO as well (see figure 2). B-type diagrams entail the typical ambiguity in defining

the fermion flow present when dealing with Majorana fermions. For a discussion on this

point and for the Feynman rules of the MSSM we refer the reader to the refs. [11]–[12].

According to eq. (2.5), the Wilson coefficients at the LO are given directly by the

amplitudes F
(0)
j . As discussed in the previous section, however, in the presence of dimen-

sionally regularized IR divergences, the NLO calculation of the Wilson coefficients also

requires the evaluation of the LO coefficients of the physical operators up to O(ε), as well

as the evaluation at the LO of the coefficients of the evanescent operators. This is due to

the presence of the last term in eq. (2.5). In the DRED regularization scheme, one finds

the appearance of both a d-dimensional metric tensor gµν generated by loop integration

(the momenta are d-dimensional) and of a four-dimensional tensor, g̃µν , coming from the

algebra of four-dimensional gamma matrices. Evanescent operators are generated in this

scheme by the contraction of Dirac strings with the tensor ∆gµν , which can be defined by

the following splitting of the metric tensor [13]:

gµν =
d

4
g̃µν +

(
gµν −

d

4
g̃µν

)
≡ d

4
g̃µν + ∆gµν , (3.2)
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dk

bh

bl

dm
g̃

g̃

××
b̃h

d̃k

d̃m

b̃l

dk

bh

bl

dm

×

×b̃h d̃m

d̃k b̃l

g̃ g̃

dk

bh

bl

dm

××
b̃h

d̃k

d̃m

b̃l

g̃ g̃

dk

bh

bl

dm

×

×b̃h d̃m

d̃k b̃l

g̃ g̃

Figure 1: Feynman diagrams describing the gluino contribution to the Bd − B̄d transition in the

MSSM. A cross indicates a mass insertion and the indices h, k, l,m label the squark chiralities. The

diagrams denoted as A-type and B-type in the text are those represented in the first and second

row respectively.

where d = 4− 2ε and the relations

gµν g̃
ν
ρ = gµρ , ∆gµν g̃

µν = 0 (3.3)

define the contraction rules in the DRED scheme. The term ∆gµν is of O(ε) and provides

our definition of the evanescent operators. In the calculation of the LO diagrams we find

the appearance of the following evanescent operators:

EDRED
1 = ∆gµν d̄

iγ̃µLb
i d̄jγ̃νLb

j ,

EDRED
2 = ∆gµν d̄

iγ̃µLb
i d̄jγ̃νRb

j ,

EDRED
3 = ∆gµν d̄

iγ̃µLb
j d̄j γ̃νRb

i , (3.4)

plus ẼDRED
1 , obtained from EDRED

1 via the exchange L↔ R.

We have performed the LO calculation by using the three regularization schemes dis-

cussed at the beginning of this section. The scheme independent results for the Wilson

coefficients of the physical operators at the LO, in four dimensions, are in agreement with

those obtained in ref. [3] and are presented for completeness in appendix A.

3.2 NLO calculation

The Feynman diagrams entering the calculation of the amplitude at the NLO are shown

in figures 2-5. They have been generated by using the Mathematica [14] package Fey-

nArts [15]. The full set of NLO diagrams can be divided in four categories.

1. Gluon corrections, connecting different legs in A-type or B-type LO diagrams. These

corrections are collected in figure 2.
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A-type graph B-type graph #

A12 B12 4

A13 B13 4

A14 B14 4

A15 B15 8

A16 B16 8

A17 B17 8

A18 B18 8

A56 B56 2

A57 B57 8

A78 B78 2

Figure 2: NLO diagrams generated by gluon corrections to A-type and B-type LO topologies.
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A-type graph B-type graph #

A55g B55g 4

A55q B55q 8Nf

A77g B77g 4

A77q B77q 4

A77s B77s 4

Figure 3: NLO diagrams generated by self-energy corrections to A-type and B-type LO topologies.

A-type graph B-type graph #

AV BV 4

AT BT 16

Figure 4: NLO diagrams generated by squark corrections to A-type and B-type LO topologies.

2. Self-energy corrections of internal legs; these are collected in figure 3.

3. Squark corrections, generated by adding to the LO topologies one more squark prop-

agator via the quark-squark-gluino interaction vertex. These diagrams are shown in

figure 4.

4. Quartic scalar interactions, generated by the four squark vertex and collected in

figure 5.
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diagram graph #

X1 2

X2 1

Figure 5: NLO diagrams generated by four squark interaction vertices.

All these diagrams, except for those belonging to the last category, are generated from

the LO topologies with the inclusion of an additional loop in all possible ways. The

last column in figures 2-5 indicates the number of existing diagrams, including the one

shown in the figure, that are obtained from the latter by performing 90o or 180o rotations

around the horizontal, vertical or perpendicular axis. Diagrams containing self-energy

corrections of the external legs have not been included in the above list. As discussed in

section 2, however, these corrections have to be taken into account and receive two kinds

of contributions. QCD contributions mediated by gluons enter the calculation of both the

full and the effective theory and cancel in the matching, while supersymmetric squark and

gluino corrections give a finite contribution to the NLO Wilson coefficients.

Among the diagrams presented in figures 2-5, those producing either UV or IR diver-

gences are the following ones,

UV divergent: {A15, A17, A57, A55g , A55q, A77g, A77q, A77s}+ {A→ B}
IR divergent: {A12, A13, A14}+ {A→ B} . (3.5)

By looking at figures 2-5 one can see that UV divergent graphs are only those containing

vertex and self-energy corrections. These graphs provide in particular the SUSY contribu-

tions to the renormalization of the strong coupling constant and of the squark and gluino

fields and masses. IR divergences, instead, are produced by those diagrams in which a

virtual gluon connects two external quark lines. These diagrams are in a one-to-one corre-

spondence with the diagrams entering the calculation in the effective theory and the whole

set of IR divergences cancel in the matching.

We now describe, in some detail, the procedure followed in the evaluation of the two-

loop diagrams of the full theory.

Having chosen external quarks with zero masses and momenta, a typical two-loop

amplitude can be schematically expressed as

D =

∫
ddq1

(2π)d
ddq2

(2π)d
ΓA(q1, q2, µ, ν, . . .)⊗ ΓB(q1, q2, µ, ν, . . .)(
q2

1 −m2
1

)n1
(
q2

2 −m2
2

)n2
(
(q1 − q2)2 −m2

3

)n3
(3.6)

– 9 –
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where ΓA,B represent strings of gamma matrices and loop momenta with saturated Lorentz

indices. To simplify the notation, external quark spinors in the amplitude have been

omitted. In the denominator, partial fractioning has been applied in order to express it

in terms of the minimum number of scalar propagators, which is equal to three for a two-

loop calculation with vanishing external momenta. The masses m1,2,3 stand generically for

the different masses entering the calculation, namely the gluino mass M g̃, the mean squark

mass Ms defined in eq. (3.1) and, when regularizing with a massive gluon, the gluon mass λ.

One of the advantages of working with vanishing external momenta is that, once the

loop integration has been performed, the amplitude in eq. (3.6) turns out to be expressed

only in terms of strings of gamma matrices, with either physical (Γ
(i)
A ⊗Γ

(i)
B ) or evanescent

(E
(i)
A ⊗E

(i)
B ) structures, multiplied by scalar functions of the particle masses:

D =
∑

i

[
ai(m) Γ

(i)
A ⊗ Γ

(i)
B + bi(m) E

(i)
A ⊗E

(i)
B

]
(3.7)

The functions bi(m) are not of interest for our purposes, since the evaluation of the Wilson

coefficients at the NLO only requires, according to eq. (2.5), the projections F
(1)
i of the

two-loop amplitude on the physical operators. The complete basis of Lorentz invariant

Dirac structures on which we project is given by

Γ
(i)
A ⊗ Γ

(i)
B = {γµL ⊗ γµL, γ

µ
L ⊗ γµR, PL ⊗ PL, PL ⊗ PR, σ

µν
L ⊗ σµνL}+ {L↔ R} (3.8)

where L↔ R indicates the structures obtained by exchanging left and right projectors.

In order to extract directly from a given amplitude D the coefficients ai of the physical

operators, we used a basis of orthonormal projectors. These are defined as a set of strings

of gamma matrices, P
(j)
A ⊗ P

(j)
B , satisfying the orthonormality conditions

Tr
[
Γ

(i)
A P

(j)
A Γ

(i)
B P

(j)
B

]
= δij . (3.9)

In the DRED scheme the traces are computed in four dimensions. In NDR instead, where

gamma matrices are d-dimensional objects, the traces are performed in d dimensions and

the orthonormality conditions (3.9) are required to be fulfilled up to and including terms

of O(ε); this is sufficient, since the two-loop amplitude in the present calculation contains

at most 1/ε divergences. With these requirements the projectors P
(j)
A ⊗ P

(j)
B are uniquely

defined. The main advantage of using this procedure is that, once the projection is applied

to an amplitude of the form (3.6), the resulting expression only involves scalar integrals.

The number of independent two-loop integrations to be performed is therefore significantly

reduced.

Besides satisfying eq. (3.9), the projectors must be also orthogonal to the evanescent

structures. This requirement ensures that, once the projection is applied to the r.h.s.

of eq. (3.7), no finite contribution coming from the evanescent operators is kept in the

amplitude. This issue is of relevance in the DRED-d scheme, where IR divergences are

dimensionally regularized. In this case, the orthogonality of the projectors to the evanescent

operators is guaranteed by the following observation: all the Dirac structures entering the

evanescent operators in this scheme have uncontracted Lorentz indices and, after the four

– 10 –
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dimensional projections, can only give rise to products of four dimensional g̃µν tensors. The

latter, in turn, are orthogonal to the evanescent operators in the DRED scheme defined as

in eq. (3.4), because of the second of eqs. (3.3).

After the projection has been performed, the evaluation of the two-loop integrals is

reduced to computing scalar integrals of the form

I(m1,m2,m3;n1, n2, n3) ≡
∫

ddq1

(2π)d
ddq2

(2π)d
1(

q2
1 −m2

1

)n1
(
q2

2 −m2
2

)n2
(
(q1 − q2)2 −m2

3

)n3
. (3.10)

This task is greatly simplified by the use of the recurrence relations [16], which allow

to reduce all scalar integrals of the form (3.10) to a single two-loop master integral,

I(m1,m2,m3; 1, 1, 1), besides trivial one-loop tadpole integrals.1 The result for the master

integral I(m1,m2,m3; 1, 1, 1) is given in ref. [20].

A further step is required when one of the three masses in the denominator of the

integral (3.10) is the gluon mass λ, introduced to regularize IR divergences. As a result

of having implemented the recurrence relations, one finds that the coefficients multiplying

the master integral contain negative powers of λ, up to O(1/λ4). The master integral itself

must be therefore expanded up to O(λ4). After the expansion, all power divergences must

cancel in the amplitude and only logarithmic IR divergences remain, which cancel in the

matching.

The last step, after the projection and the loop integration, consists in expressing the

NLO amplitude in terms of tree-level matrix elements of the operators in the basis (2.2).

This is done by using Fierz rearrangement and color algebra. Note, however, that the

possibility of expressing the amplitude in terms of tree-level matrix elements, up to terms

of O(ε), does not occur diagram by diagram. It only holds, in general, for the complete

amplitude. This step already provides, therefore, a useful check of the correctness of the

calculation.

The sum of the UV renormalized and IR regularized NLO diagrams gives, in the

notation of eq. (2.5), the functions F
(1)
j , that represent the main ingredient in the NLO

evaluation of the Wilson coefficients.

4. Calculation in the effective theory

The second step required in the matching procedure is the calculation of the amplitude

in the effective theory and, in particular, of the matrix r defined in eq. (2.4). Using this

equation and introducing the renormalization matrix Z for the operators Oi, we can write

the one-loop matrix elements of the renormalized operators as

〈Oi〉ren =
∑

j

Z−1
ij 〈Oj〉bare =

∑

j

(
1 +

αs
4π

r
)
ij
〈Oj〉(0) . (4.1)

1The application of recurrence relations can be automatically performed by using the Tarasov reduction

algorithm [17, 18] implemented in the Mathematica program TARCER [19].
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Figure 6: Feynman diagrams contributing at one loop to the four-fermion operator matrix elements

in the effective theory.

We note again that, in the case of the DRED-d regularization setup, the first index i of rij
runs over the evanescent operators too. The reason is that in the presence of dimensionally

regularized IR divergences the renormalized matrix elements of evanescent operators do

not vanish.

Eq. (4.1) shows that the calculation of the matrix r involves two steps: i) the deter-

mination of the matrix elements of the bare operators 〈Oj〉bare up to one loop and ii) the

one loop determination of the renormalization matrix Z.

As for the calculation of the bare matrix elements, they receive contributions in the

effective theory only from QCD interactions. The relevant Feynman diagrams are those

represented in figure 6, plus the three diagrams obtained by performing 180o rotations.

Consistency in the matching procedure requires the matrix elements in the effective theory

to be computed between the same set of external states and with the same regularization

procedure for IR divergences adopted in the full theory. Therefore, we have performed

this calculation by choosing massless quarks with zero momentum as external states and

implementing separately the three regularization setups: DRED-d, DRED-λ and NDR-λ.

Note, in particular, that the bare amplitudes vanish identically at one loop in the DRED-

d scheme, since all loop integrals in this case reduce to tadpole massless integrals which

vanish in dimensional regularization.

Eq. (4.1) also indicates that the one loop results for the bare matrix elements must be

projected onto the basis of the physical operators. This projection implies a definition of the

evanescent operators. In the DRED regularization scheme the only evanescent operators

entering the calculation are defined to be proportional to the tensor ∆gµν of eq. (3.2).

Besides the operators specified in eq. (3.4), we also find the appearance of the evanescent

operators

EDRED
4 = ∆gµν d̄

iσµρL bi d̄jσνρLb
j ,

EDRED
5 = ∆gµν d̄

iσµρL bj d̄jσνρLb
i . (4.2)

In the NDR scheme, instead, both Dirac and Fierz evanescent operators must be

introduced. Dirac evanescent operators are defined from the orthogonality condition to the

Dirac projectors (see eq. (3.9)),

Tr
[
E

(i)
A P

(j)
A E

(i)
B P

(j)
B

]
= 0 . (4.3)

The complete list is given in ref. [9]. As for the Fierz evanescent operators, they are defined

without introducing in the four dimensional Fierz relations arbitrary terms of O(ε); for
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example, the γµL ⊗ γµL Fierz evanescent operator reads

ENDR
1 = d̄iγµLb

j d̄jγµLb
i − d̄iγµLbi d̄jγµLbj (4.4)

and similarly for the other gamma structures.

According to eq. (4.1), the second ingredient in the determination of the matrix r is the

one-loop calculation of the renormalization matrix Z. This requires again the evaluation

of the Feynman diagrams shown in figure 6. In this case however, in order to identify

the UV divergences within dimensional regularization, one can either regularize the IR

divergences with a fictitious gluon mass or consider a set of IR finite external states, for

instance off-shell quarks with fixed momentum p.

In both the MS-DRED and -NDR regularization schemes the renormalization matrix

of the physical operators is determined by applying the modified minimal subtraction pre-

scription. Evanescent operators, instead, must satisfy a different renormalization condition.

For IR finite configurations of external states, this condition reads

〈Ei(µ)〉 = 0 in the limit d→ 4 , (4.5)

and holds at any value of the renormalization scale µ [21]. It guarantees that the evanescent

operators do not play any role when going back to four dimensions and can be eventually

removed from the operator basis of the effective Hamiltonian.

The final result for the matrix r defined in eq. (4.1) depends on several choices done

in the calculation: the external states, the IR regulator (when IR divergences are present)

and the renormalization scheme of the local operators. Thus we end up with three different

matrices, rDRED−d, rDRED−λ and rNDR−λ. Here we only present the results for the differ-

ences ∆r between these matrices because, at variance with the r’s, they are independent

of the specific choice of both the external states and the IR regulator. As can be seen from

eq. (4.1), the matrices ∆r provide the relation between operators renormalized in different

schemes. In the case of the MS-NDR and DRED schemes, for instance, this relation reads

〈Oi〉MS−NDR =
(

1 +
αs
4π

∆rNDR/DRED
)
ij
〈Oj〉MS−DRED , (4.6)

where ∆rNDR/DRED ≡ rNDR − rDRED. For this matrix we obtain the result

∆rNDR/DRED =




−3 0 0 0 0

0 −13/3 −1/3 0 0

0 −29/6 7/6 0 0

0 0 0 −5/3 −3

0 0 0 −7/2 −1/6



, (4.7)

in the basis O1, . . . ,O5 of eq. (2.2). Since chirality is conserved by QCD interactions in the

limit of massless quarks, the corresponding matrix for the operators Õ1,2,3 is equal to the

3× 3 submatrix for O1,2,3 in eq. (4.7) and the two sets of operators do not mix.

In addition, we provide the matrix ∆r relating the MS-DRED with the so called RI-

MOM scheme in the Landau gauge [22]. This is useful because this scheme is frequently
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used in lattice QCD calculations of the hadronic matrix elements. This matrix reads:

∆rDRED/RI =




−5
3 + 8 ln 2 0 0

0 A2×2 0

0 0 B2×2


 , (4.8)

with

A2×2 =

(
67
9 + 44

9 ln 2 −1
9 + 28

9 ln 2

−28
9 + 28

9 ln 2 −68
9 + 44

9 ln 2

)
(4.9)

and

B2×2 =

(
13− 2

3 ln 2 1 + 2 ln 2

11
2 + 2 ln 2 − 1

2 − 2
3 ln 2

)
. (4.10)

The results in eqs. (4.7) and (4.8) can be also combined to obtain the matrix relating the

MS-NDR with the RI-MOM scheme: ∆rNDR/RI = ∆rNDR/DRED + ∆rDRED/RI.

5. Results and checks of the calculation

In the previous sections we have described the calculation of the two ingredients needed to

obtain the Wilson coefficients at the NLO: the LO and NLO amplitudes in the full theory,

F (0) and F (1), and the matrix r in the effective theory. The NLO Wilson coefficients are

finally determined using eq. (2.5). They bear a dependence on both the renormalization

scheme and scale. These dependences only arise at the NLO and allow one to perform useful

checks of the calculation. The relations among the results for the coefficients as obtained

in the three regularization setups, DRED-λ, NDR-λ and DRED-d, will be discussed in

the following subsection. The scale dependence of the Wilson coefficients must satisfy the

renormalization group equation, and this constraint will be addressed in subsection 5.2.

5.1 Regularization and renormalization scheme dependence

The results for the coefficients obtained in the DRED-λ setup must be equal to those

obtained in DRED-d, since the Wilson coefficients cannot depend on the IR regulator.

Indeed, upon explicit comparison, they are found to be in agreement. We emphasize

that this is a non-trivial check of the calculation. Indeed, whereas the computation in

the DRED-λ scheme presents basically no subtlety, the one in the DRED-d regularization

entails the inclusion in the full theory of the LO contributions up to O(ε) and of the

evanescent operators. All these contributions should sum up to reconstruct the results

obtained by using the gluon mass as IR regulator.

The results for the Wilson coefficients obtained in the MS-DRED and NDR renormal-

ization schemes differ because the coefficients are scheme dependent quantities. They can

be compared using the scheme independence of the effective Hamiltonian:

〈b, d|Heff |b, d〉 =
∑

i

CDRED
i 〈b, d|Qi|b, d〉DRED = CNDR

i 〈b, d|Qi|b, d〉NDR . (5.1)
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The relation between renormalized operators in the two schemes has been written in

eq. (4.6) in term of the matrix ∆r. From eq. (5.1), it then follows that the same ma-

trix also relates the coefficients in different schemes, e.g.

CNDR
i (Ms,Mg̃, αs) =

∑

j

(
1− αs

4π
∆rNDR/DRED

)
ji
CDRED
j (Ms,Mg̃, αs) , (5.2)

where ∆rNDR/DRED is given in eq. (4.7). Notice that in eq. (5.2) the transposed matrix

∆rT enters. The coupling constant αs and the SUSY masses Ms and Mg̃ in the previous

equation are also scheme dependent quantities. This dependence starts at O(αs) and must

be taken into account in the matching at the NLO. In order to verify eq. (5.2), therefore,

one needs to express all the couplings in the same scheme. The required relations are [23]:

α̂NDR
s = αDRED

s

(
1 +

αs
4π

(Nc − CF )
)

MNDR
g̃ = MDRED

g̃

(
1 +

αs
4π
Nc

)
(5.3)

MNDR
s = MDRED

s

(
1 +O(α2

s)
)
,

where Nc = 3 and CF = 4/3 are the SU(3)c color factors. The strong coupling constant α̂s
in eq. (5.3) indicates the coupling of the quark-squark-gluino vertex. A different relation is

found for the quark-quark-gluon coupling, which differs from α̂s in the NDR scheme because

this regularization breaks supersymmetry [23] (see eq. (A.3)). In the present calculation,

since the shifts expressed by eq. (5.3) are O(αs), they have to be implemented only in the

LO amplitude, where only the coupling α̂s appears. We find that our results for the Wilson

coefficients as obtained in the DRED and NDR schemes consistently satisfy eq. (5.2), with

the matrix ∆rNDR/DRED given in eq. (4.7).

5.2 Renormalization scale dependence

Beyond LO, the Wilson coefficients acquire an explicit dependence on the renormaliza-

tion scale µ. This dependence is controlled by the renormalization group equation, which

provides therefore an additional check of the calculation.

The renormalization group equation for the Wilson coefficients of the MSSM [24, 25]

can be written as
[

∂

∂ lnµ2
+

dαs
d lnµ2

∂

∂αs
+

dM2
g̃

d lnµ2

∂

∂M2
g̃

+
dM2

s

d lnµ2

∂

∂M2
s

+
∑

X

d∆X

d lnµ2

∂

∂∆X

−1

2
γT
]
~C(µ) = 0 , (5.4)

and takes into account the scale dependence of all the quantities entering the coefficients,

namely the strong coupling constant αs, the squark and gluino masses Ms and Mg̃ and the

dimensionful mass insertions ∆X , with X = LL, RR, LR ,RL.

The matrix γ in eq. (5.4) is the anomalous dimension matrix of the four-fermion

operators (2.2) in the effective theory (i.e. QCD). It can be expanded as

γ(αs) = Z−1 dZ

d lnµ
=
αs
4π

γ0 +O(α2
s) (5.5)
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where, for the LO anomalous dimension γ0, we obtain the expression

γ0 =




4 0 0 0 0

0 −28/3 4/3 0 0

0 16/3 32/3 0 0

0 0 0 −16 0

0 0 0 −6 2



, (5.6)

in agreement with eqs. (11)-(13) of ref. [26].

The renormalization group equation for the strong coupling constant in the MSSM

reads

βMSSM(αs) =
dαs
d lnµ2

= −α
2
s

4π
βMSSM

0 +O(α3
s) , (5.7)

with βMSSM
0 = 3Nc −Nf .

The scale dependence of the squark and gluino masses, Ms and Mg̃, is described instead

by the equations

γMi(αs) =
1

M2
i

dM2
i

d lnµ2
= −αs

4π
γ

(0)
Mi

+O(α2
s) , i = s, g̃ , (5.8)

where γ
(0)
Ms

= 4CFM
2
g̃ /M

2
s and γ

(0)
Mg̃

= 2βMSSM
0 = 2(3Nc −Nf ).

Finally, the running of the dimensionful mass insertions ∆X is expressed by

d∆LL(RR)

d lnµ2
= 0 +O(α2

s) ,

d∆LR(RL)

d lnµ2
= −αs

4π
γ

(0)
∆ ∆LR(RL) +O(α2

s) (5.9)

with γ
(0)
∆ = 2CF .

By using the results given in eqs. (5.7)–(5.9), we have then verified that our expressions

for the Wilson coefficients exhibit at the NLO the correct renormalization scale dependence

predicted by eq. (5.4).

5.3 Discussion of the results

We conclude this section by presenting and discussing the final results obtained for the

Wilson coefficients at the NLO. The complete expressions of these coefficients, in the MS-

DRED renormalization scheme, are collected in appendix A.

In order to illustrate the typical size of the computed NLO corrections, we show in

figure 7 the values of the NLO contributions to the Wilson coefficients normalized to their

expected size, namely the corresponding LO coefficients multiplied by αs(Ms)/π. For the

purpose of illustration, in this comparison we set the scale µ = Ms and put Mg̃ = Ms. As

can be seen from the plot, in several cases the NLO coefficients turn out to be larger than

what naively expected. Of course, this conclusion applies to the MS-DRED coefficients

and could change in a different renormalization scheme.

The Wilson coefficients depend on the matching scale µ which can be chosen around

a typical SUSY scale, e.g. the average squark mass Ms. An important achievement of
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Figure 7: Comparison between the LO and NLO contributions to the MS-DRED Wilson coeffi-

cients at the scale µ = Ms and at the reference value Mg̃ = Ms. For the coefficients C4 and C5 the

contributions proportional to δLLδRR and δLRδRL are shown separately.

the NLO calculation is a significant reduction of this dependence with respect to the LO

approximation. This is illustrated in figure 8 where we show the LO and NLO predictions

for the Bd-mesons mass difference ∆md as a function of the high-energy scale µ chosen for

the matching. These predictions are obtained by adding the SUSY contributions to the

reference SM value, ∆mSM
d = 0.496 ps−1. The hadronic matrix elements are evaluated by

using the lattice QCD results of ref. [27] for the B-parameters and fBd = 189 MeV. We set

Ms = Mg̃ = 350 GeV and consider two cases for mass insertion coefficients, δLL = δRR =

0.12 exp[−i 23o] (upper plot in figure 8) and δLR = δRL = 0.026 exp[−i 23o] (lower plot in

figure 8), chosen to give a SUSY contribution compatible with the present measurement

taking into account the SM uncertainty. Clearly, the reduction of the scale dependence

found at the NLO quantitatively depends on the specific values chosen for the mass insertion

parameters.

From figure 8 we see that the SUSY prediction for ∆md varies, at the LO, by ap-

proximately ±16% (±8%) in the LL/RR (LR/RL) case, when the scale µ is varied in the

typical range between Ms/2 and 2Ms. With the NLO calculation, the dependence on the

matching scale is reduced by a factor two or more, i.e. at the level of ±5% (±2%) percent.

We conclude this section by observing that phenomenological applications require the

knowledge of the hadronic matrix elements. These are usually computed on the lattice

where, in order to perform a fully non-perturbative renormalization, the RI-MOM renor-

malization scheme [22] is needed. This is the scheme adopted for instance in refs. [28, 29]

and [27], where lattice results for the complete basis of four-fermion operator matrix ele-

ments relevant for K−K and Bd,s−Bd,s systems have been presented. In these cases, the

results for the Wilson coefficients given in appendix A in the MS-DRED scheme must be

converted to the RI-MOM scheme. This can be easily done using the relation analogous
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Figure 8: LO and NLO predictions for the Bd-mesons mass difference ∆md obtained by adding the

SUSY contributions proportional to δLL, δRR (top) and δLR, δRL (bottom) to the SM prediction.

See text for the reference values of the input parameters. The results are plotted as functions of

the matching scale µ.

to eq. (5.2), namely

CRI
i =

∑

j

(
1 +

αs
4π

∆rDRED/RI
)T

ij
CMS−DRED
j . (5.10)

The matrix (∆rDRED/RI)T which performs the matching between the two schemes can be

obtained by transposing the matrix in eq. (4.8).
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6. Conclusions

In this work we have computed the NLO strong interaction corrections to the Wilson coeffi-

cients relevant for ∆F = 2 transitions in the MSSM with the mass insertion approximation.

The complete expressions for the coefficients are given in appendix A in the MS-DRED

scheme. We also give in eqs. (5.2) and (5.10) the formulae required to translate the Wilson

coefficients at the NLO from the DRED to the NDR and the RI-MOM renormalization

schemes, which might be useful for phenomenological applications.

Theoretically, the NLO calculation of the Wilson coefficients is required to cancel the

corresponding renormalization scale and scheme dependence of the renormalized operators.

Once combined with the NLO anomalous dimension of the four-fermion operators given

in ref. [8], our results allow to perform a complete NLO analysis of ∆F = 2 transitions in

the MSSM. The phenomenological analysis will be presented in a forthcoming publication.

In this study we have shown that, by considering as a reference example the theoretical

prediction of the Bd-meson mass difference ∆md, the uncertainty due to the choice of the

the high-energy matching scale is largely reduced going from the LO to the NLO, typically

from about 10-15% to few percent.

Acknowledgments

We warmly thank Giuseppe Degrassi and Schedar Marchetti for valuable discussions. D.G.

acknowledges the support of Fondazione Angelo Della Riccia, Firenze, Italy. This work has

been supported in part by the EU network “The quest for unification” under the contract

MRTN-CT-2004-503369.

A. Results for the Wilson coefficients

In this appendix we collect the complete NLO expressions of the Wilson coefficients en-

tering the effective Hamiltonian which describes ∆F = 2 transitions mediated by strong

interactions in the MSSM.

We consider the complete basis of four fermion operators given in eq. (2.2). The

coefficients for the operators Q̃1,2,3 are obtained from those of the operators Q1,2,3 by

simply exchanging L ↔ R in the mass insertion parameters. For this reason, we will not

present in the following their explicit expressions.

The Wilson coefficients are written as

Ci(µ) = C
(0)
i (µ) + C

(1)
i (µ) , (A.1)

where µ is the scale used in the matching procedure. To simplify the notation, in the

following, we will not write explicitly the µ dependence of masses and couplings.

The LO calculation of the Wilson coefficients has been performed in ref. [3] and we

agree with their results. These coefficients read

C
(0)
1 (µ) =

α2
s

(1− x)5M2
s

[
11

108
+

133x

108
− 13x2

12
− 29x3

108
+
x4

54
+

(
13x

18
+

17x2

18

)
log x

]
δ2
LL
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C
(0)
2 (µ) =

α2
s

(1− x)5M2
s

[
289x

108
− 17x2

12
− 17x3

12
+

17x4

108
+

(
17x

18
+

17x2

6

)
log x

]
δ2
RL

C
(0)
3 (µ) =

α2
s

(1− x)5M2
s

[
− 17x

36
+
x2

4
+
x3

4
− x4

36
−
(
x

6
+
x2

2

)
log x

]
δ2
RL

C
(0)
4 (µ) =

α2
s

(1− x)5M2
s

[(
− 11

54
− 11x

6
+

11x2

6
+

11x3

54
− 11x

9
(1 + x) log x

)
δLRδRL +

(
− 1

9
+

101x

18
− 5x2

2
− 61x3

18
+

7x4

18
+

(
5x

3
+

19x2

3

)
log x

)
δLLδRR

]

C
(0)
5 (µ) =

α2
s

(1− x)5M2
s

[(
− 5

18
− 5x

2
+

5x2

2
+

5x3

18
− 5x

3
(1 + x) log x

)
δLRδRL +

(
5

27
+

107x

54
− 11x2

6
− 19x3

54
+
x4

54
+

(
11x

9
+

13x2

9

)
log x

)
δLLδRR

]
(A.2)

where x = M 2
g̃ /M

2
s with Mg̃ the gluino mass and Ms the average squark mass. The

dimensionless mass insertion parameters are understood to be δd12, δd13, δd23 and δu12 for the

cases of K, Bd, Bs and D mixings respectively.

At the NLO, the Wilson coefficients are scheme dependent quantities. Here we present

the results for the operators renormalized in the MS-DRED scheme, and we adopt the same

scheme also for the strong coupling constant αs(µ) and for the squark and gluino masses.

Eq. (5.10) can be then used to convert the coefficients to the RI-MOM scheme, frequently

adopted in lattice QCD calculations of the corresponding hadronic matrix elements. As

for the strong coupling constant and the squark and gluino masses, they can be converted

to their counterparts in the MS-NDR scheme by using [30, 23]

αNDR
s = αDRED

s

(
1− αs

4π

Nc

3

)

MNDR
g̃ = MDRED

g̃

(
1 +

αs
4π
Nc

)
(A.3)

MNDR
s = MDRED

s

(
1 +O(α2

s)
)
.

We now present the NLO expressions for the Wilson coefficients. In the following, the

symbol Li2(x) denotes the dilogarithm function defined as

Li2(x) = −
∫ x

0

dt

t
ln(1− t) (A.4)

and all couplings and masses are understood to be renormalized at the same scale µ. The
coefficients read

C
(1)
1 (µ) =

α3
s

πM2
s

1

(1− x)7
·

δLL
2

[
4171

864
+

50197x

2592
− 9911x2

144
+

25039x3

432
− 27371x4

2592
− 317x5

96
+

7x6

12
− 4x7

81
+

(
55x

9
+

17005x2

1296
− 3607x3

144
+

4319x4

1296
+

3875x5

1296
− 5x6

9
+

4x7

81

)
logx+

(
− 247x

72
− 1079x2

72
+

3721x3

216
+

497x4

216

)
log2 x+
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(
− 229

108
+

691x

108
+

67x2

36
− 1559x3

108
+

224x4

27

)
Li2(1− x) +

log

(
M2
s

µ2

)(
− 11

54
− 577x

108
+

1094x2

81
− 2389x3

324
− 1255x4

324
+

310x5

81
− 191x6

324
+

4x7

81
+

(
− 91x

36
− 133x2

108
+

935x3

108
− 529x4

108

)
log x

)]
(A.5)

C
(1)
2 (µ) =

α3
s

πM2
s

1

(1− x)7
·

δRL
2

[
311827x

3888
− 783947x2

3888
+

308057x3

1944
− 58433x4

1944
− 39589x5

3888
+

14093x6

3888
− 34x7

81
+

(
107x

9
+

2285x2

108
− 5839x3

162
− 109x4

81
+

41x5

6
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)
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)]
(A.6)
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+

(
85x
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+
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+
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(A.7)

C
(1)
4 (µ) =

α3
s

πM2
s

1

(1− x)7
·
{
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+

39341x
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+
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(A.8)
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