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1. Introduction

If ongoing and planned experiments discover direct or indirect departures from the Stan-
dard Model (SM), the next step will be to understand what kind of new physics is involved.
Detailed predictions for flavour changing neutral currents processes in supersymmetry play
a crucial role in this program. In particular, flavour mixing induced by sfermion mass
matrices is a pure supersymmetric effect with no analogue in the SM and constitutes in
general the bulk of SUSY contributions to neutral meson mixings. These processes provide
in turn one of the most sensitive guideline for reconstructing the structure of SUSY soft
breaking terms. Ultimately, this information will allow us to discriminate among the many
possible mechanisms for SUSY breaking that have been proposed in the literature.

In this paper we present the next-to-leading order (NLO) strong interaction correc-
tions to gluino-mediated AF = 2 box diagrams in the Minimal Supersymmetric Standard
Model (MSSM). We obtain the NLO Wilson coefficients of the effective Hamiltonian rele-
vant for neutral meson mixings. We adopt the mass insertion approximation [[J which is
phenomenologically motivated and permits a compact presentation of the results for the
Wilson coefficients.

The complete expressions of the Wilson coefficients at the NLO are collected in ap-
pendix [, where the results are presented in the MS-DRED renormalization scheme. In



eqs. (1)-(5.2) and (B.§)-(p.10) we provide the formulae required to translate the Wilson
coefficients to the MS-NDR and RI-MOM schemes. The relations between the strong cou-
pling constant and the squark and gluino masses in the MS-DRED and NDR schemes are
given in eq. ([A.3).

At the LO, strong interaction contributions to AF = 2 processes are described in
SUSY by the gluino mediated box diagrams represented in figure [J These diagrams have
been computed in refs. [P-[B]. NLO corrections to AF = 2 processes in the SM have
been computed in ref. [l and are available for the chargino contributions in the MSSM [}
and for the Two Higgs Doublet Model [f]. Both chargino and gluino contributions have
been then computed in [{] in the MSSM with minimal flavour violation. The anomalous
dimension matrix for the complete set of four-fermion operators entering the effective AF =
2 Hamiltonian has been evaluated at the NLO in QCD in refs. [B, fi.

This paper completes the NLO determination of the effective Hamiltonian by com-
puting the initial conditions for the Wilson coefficients at the high-energy supersymmetric
scale. Besides the general argument that initial conditions are needed to obtain scheme-
independent results and to achieve NLO scale invariance, our calculation is strongly mo-
tivated by two additional considerations. First, the LO coefficients generated by gluino
exchange are proportional to a2?. Without the NLO computation of matching conditions,
it is not possible to specify the scale and scheme for the strong coupling, resulting in
an uncertainty of the LO result much larger than in ordinary weak-interaction processes.
Second, the new AF = 2 operators generated by gluino exchange have surprisingly large
anomalous dimensions, so that there is a large scale dependence that can only be removed
by adding the NLO corrections to the matching (see eq. (p.4)). We consider two different
regularization schemes for ultraviolet (UV) divergences, namely the naive dimensional reg-
ularization (NDR) and the dimensional reduction (DRED). Infrared (IR) divergences are
treated both with a gluon mass (in the NDR and DRED schemes) and with dimensional
regularization (in DRED). The main achievement of the NLO determination is a strong
reduction of the high-energy scale dependence of the Wilson coefficients compared to the
LO, typically from about 10-15% to few percent. Applications of our calculation are studies
of By — Bd,s, D — D and K — K mixings. Preliminary results for the B; — By mixing case
have been given in ref. [[L0] and a complete phenomenological analysis will be presented in
a forthcoming paper.

The plan of the paper is the following. In section P| we introduce the effective Hamil-
tonian approach and the basic formulae used in the matching procedure at the NLO. In
section | we discuss the calculation in the full theory (the MSSM) both at the LO and
at the NLO. The latter represents the main result of the paper. We give details of the
calculation and address in particular the issues related to the role of evanescent operators
in the matching. In section #l we present the calculation in the effective theory. The results
for the Wilson coefficients are discussed in section [ together with the consistency checks
between results obtained in the different UV and IR regularization schemes and the scaling
under the renormalization group equation. Finally, in section [, we draw our conclusions.
The complete expressions of the Wilson coefficients, both at the LO and at the NLO, are
collected in appendix [A]



2. Effective Hamiltonian for AF = 2 processes

The effective Hamiltonian for AF = 2 processes in the presence of new physics can be
written in terms of eight independent four-fermion operators,

5 3
H?HFZQ = Z C; O; + Z C’z @z , (2.1)
i=1 i=1

where C; are the Wilson coefficients and we adopt the following basis for the local operators
O;

Oy = dy, b &ALy,
Oy =d PV dPLY
O3 = d'PLb P,
Oy = dPLY PRl
Os = &P, dPrb’ . (2.2)

The operators (517273 are obtained from ;33 by the exchange L < R. The left- and
right-handed projectors are defined as Pg 1, = (1+5)/2 and 7% ; = v*Pr1; i, j are colour
indices. In eq. (R.2) and in the following we specialized for definiteness on the effective
Hamiltonian which describes By — By mixing. In the case of By, D and K mixings, the
replacements {d,b} — {s,b}, {d,b} — {u,c} and {d,b} — {d,s} should be considered
respectively.

The evaluation of the coefficients of an effective Hamiltonian involves the following two
steps:

1. calculating the amplitude in both the full and the effective theory and determining
the Wilson coefficients by matching the two amplitudes at the high energy scale;

2. evolving the Wilson coefficients from the high- to the low-energy scale where the ma-
trix elements of the local operators can be computed with non-perturbative methods,
primarily lattice QCD calculations.

Step 1 depends on the theory under consideration. The new result of this paper is the
computation of the full theory amplitude in the MSSM up to the NLO in the strong
interactions. As far as step 2 is concerned, the NLO anomalous dimension of the effective
Hamiltonian in eq. (R.1]) has been calculated in ref. [f] and the result confirmed in [p].
We now recall the general formulae necessary to perform the matching between the
full and the effective theories at the NLO.
The renormalized amplitude in the full theory can be written in the form

IEDS <FZ-(O) + Z—;ﬂ(l)> (0, (2.3)

)

where (0;)©) are the tree level matrix elements of the operators ©; and F(©) and F(
represent the LO and NLO contributions respectively. Note that, in the case of the AF = 2



SUSY transitions considered in this paper, both F(© and F(!) contain an additional factor
a? not factorized out in eq. (R.3). It is also worth recalling that, in order to properly
normalize the physical amplitude, the external quark fields considered to compute the
amplitudes should be renormalized with their on-shell renormalization constant, defined as
the pole residue of the quark propagator. In the calculation performed in this paper the
external fields, as well as the strong coupling constant, renormalize differently in the full
(MSSM) and in the effective theory, and this gives a finite contribution to the matching.
In particular, one loop corrections to the quark propagator in the full theory include a
squark-gluino loop as well as a quark-gluon loop, whereas only the latter appears in the
low-energy effective theory.

It is convenient to express also the NLO renormalized amplitude in the effective theory

in terms of tree-level matrix elements of local operators,
A = Y Ci{O;) Zc (1+22r) (@) (2.4)
i K

By equating the full theory amplitude in eq. (R.3) with the effective one given in eq. (P.4)
one obtains the expression for the Wilson coefficients at the NLO,

C;=F" + - ZFkO)rkj . (2.5)

The functions F and r depend in general on the external states. In our calculation we
have chosen massless external quarks with zero momenta. Though this choice considerably
simplifies the calculation of the two-loop diagrams in the full theory, it also introduces
IR divergences in both the full and effective theories, in particular in ) and r. These
divergences cancel in the Wilson coefficients. Particular care, however, must be taken
when regularizing IR divergences in dimensional regularization. In this case, the matrix
r contains 1/e poles that give finite contributions to eq. (R.5) once combined with both
O(e)-terms entering F©) and contributions to F(©) of evanescent operators. In particular,
the summation index k in eq. (R.-§) must run in this case over both the physical and
the evanescent operators, whose specific definition will be given in the next section. The
evanescent operators which are needed instead to define the renormalization scheme of
four-fermion operators within dimensional regularization are discussed in section [J.

3. Calculation in the full theory

We now describe the NLO calculation of the Wilson coefficients for AF = 2 transitions
mediated by strong interactions in the MSSM. We will discuss in turn the computation
of all the elements entering the r.h.s. of eq. (R.H): the determination of the LO and NLO
amplitudes in the full theory, F(© and F(), is discussed in this section; the calculation of
the amplitude in the effective theory, expressed by matrix 7, will be discussed in section [l

As mentioned before, having chosen external quarks with zero masses and momenta,
the bare amplitudes in both the full and effective theories present UV as well as IR diver-
gences. To regularize both of them we have adopted three regularization setups:



e DRED, with a gluon mass A as IR regulator (DRED-\);
e DRED, to regularize both UV and IR divergences (DRED-d);
e NDR, with a gluon mass A (NDR-)).

The calculation is performed in the mass insertion approximation [f]] which is phenomeno-
logically motivated and allows a more compact presentation of the final results. In order
to fix the notation, we recall here the basic formula of the mass insertion approximation
which provides the expansion of the squark mass matrix in the flavour basis around its
mean diagonal value,

MBI = (= 02 (1457 ) =M2+0), . GO

The matrices Z and Mp are the squark mixing and mass matrix respectively in the mass
eigenstate basis; M is the squark mass matrix in the super-CKM basis ((_’j}J (j% (j% (Ll% (ﬁ% cﬁ% );
M; is a mean squark mass, as defined for example in [f; A;; (d;;) are the dimensionful
(dimensionless) mass insertions between squarks of flavour i and j. We treat Mg as the
usual mass parameter in the Lagrangian and the §’s as interaction terms. We then expand
the AF = 2 amplitude up to the second order in the §’s, which provides the first non-
vanishing contribution in the mass insertion approximation.

3.1 LO calculation up to O(e)

The amplitude of AF = 2 transitions via strong interactions at the LO in the MSSM
receives contribution from the four box diagrams represented in figure [ for the By — By
mixing case.

We denote the diagrams in the first and second row of figure [l as A-type and B-type
diagrams respectively and we will extend this notation to the analogous topologies entering
at the NLO as well (see figure fl). B-type diagrams entail the typical ambiguity in defining
the fermion flow present when dealing with Majorana fermions. For a discussion on this
point and for the Feynman rules of the MSSM we refer the reader to the refs. [[L1]-[[L2].

According to eq. (B.§), the Wilson coefficients at the LO are given directly by the
amplitudes F' j(o). As discussed in the previous section, however, in the presence of dimen-
sionally regularized IR divergences, the NLO calculation of the Wilson coeflicients also
requires the evaluation of the LO coefficients of the physical operators up to O(e), as well
as the evaluation at the LO of the coefficients of the evanescent operators. This is due to
the presence of the last term in eq. (R.§). In the DRED regularization scheme, one finds
the appearance of both a d-dimensional metric tensor g,, generated by loop integration
(the momenta are d-dimensional) and of a four-dimensional tensor, §,,,, coming from the
algebra of four-dimensional gamma matrices. Evanescent operators are generated in this
scheme by the contraction of Dirac strings with the tensor Ag,,,, which can be defined by
the following splitting of the metric tensor [[L3:

d . d d.
Juv = Zg;u/ + <guu - Zguu> = Zguu + Aguu7 (32)
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Figure 1: Feynman diagrams describing the gluino contribution to the By — By transition in the
MSSM. A cross indicates a mass insertion and the indices h, k, [, m label the squark chiralities. The
diagrams denoted as A-type and B-type in the text are those represented in the first and second
row respectively.

where d = 4 — 2¢ and the relations

Guv gz =Gup » Aguw g =0 (3.3)

define the contraction rules in the DRED scheme. The term Ag,,, is of O(¢) and provides
our definition of the evanescent operators. In the calculation of the LO diagrams we find
the appearance of the following evanescent operators:

EPRED = Aguu Jlﬁbl Jj%b] )
EP™P = Ag, A1 dFRY
EDRED — Aguw Jlﬁgbj R (3.4)
plus EPRED obtained from EPREP via the exchange L < R.
We have performed the LO calculation by using the three regularization schemes dis-
cussed at the beginning of this section. The scheme independent results for the Wilson

coefficients of the physical operators at the LO, in four dimensions, are in agreement with
those obtained in ref. [f] and are presented for completeness in appendix [].

3.2 NLO calculation

The Feynman diagrams entering the calculation of the amplitude at the NLO are shown
in figures f-f. They have been generated by using the Mathematica [[[4] package Fey-
nArts [[[5]. The full set of NLO diagrams can be divided in four categories.

1. Gluon corrections, connecting different legs in A-type or B-type LO diagrams. These

corrections are collected in figure f.



A-type graph B-type graph #

Aig Bia 4
A1 Bas 4
A1 4
Aqs 8
Agg 8
Aq7 8
Ajg 8
Asg 2
Asr 8
Ang 2

Figure 2: NLO diagrams generated by gluon corrections to A-type and B-type LO topologies.



A-type graph B-type graph #

Assg 1 ; Bssg 4
T
T~

Assq 1 o ; Bssq 8Ny
T
~._

A7zg ﬁ—.\ Bz 4
~.

Arg L;\ Bz 4
~,

4

Figure 3: NLO diagrams generated by self-energy corrections to A-type and B-type LO topologies.

A-type graph B-type graph #

16

Figure 4: NLO diagrams generated by squark corrections to A-type and B-type LO topologies.

2. Self-energy corrections of internal legs; these are collected in figure J.

3. Squark corrections, generated by adding to the LO topologies one more squark prop-
agator via the quark-squark-gluino interaction vertex. These diagrams are shown in
figure fi.

4. Quartic scalar interactions, generated by the four squark vertex and collected in

figure f.



diagram graph #

X1 ‘:.:’ ] 2

X9

Figure 5: NLO diagrams generated by four squark interaction vertices.

All these diagrams, except for those belonging to the last category, are generated from
the LO topologies with the inclusion of an additional loop in all possible ways. The
last column in figures PHf| indicates the number of existing diagrams, including the one
shown in the figure, that are obtained from the latter by performing 90° or 180° rotations
around the horizontal, vertical or perpendicular axis. Diagrams containing self-energy
corrections of the external legs have not been included in the above list. As discussed in
section [, however, these corrections have to be taken into account and receive two kinds
of contributions. QCD contributions mediated by gluons enter the calculation of both the
full and the effective theory and cancel in the matching, while supersymmetric squark and
gluino corrections give a finite contribution to the NLO Wilson coefficients.

Among the diagrams presented in figures PHf, those producing either UV or IR diver-
gences are the following ones,

UV divergent: {A1s, A17, As7, Assg, Assqs Arrg, A1, Arrs} +{A — B}
IR divergent: {Alg, Az, A14} + {A — B} . (35)

By looking at figures PHj| one can see that UV divergent graphs are only those containing
vertex and self-energy corrections. These graphs provide in particular the SUSY contribu-
tions to the renormalization of the strong coupling constant and of the squark and gluino
fields and masses. IR divergences, instead, are produced by those diagrams in which a
virtual gluon connects two external quark lines. These diagrams are in a one-to-one corre-
spondence with the diagrams entering the calculation in the effective theory and the whole
set of IR divergences cancel in the matching.

We now describe, in some detail, the procedure followed in the evaluation of the two-
loop diagrams of the full theory.

Having chosen external quarks with zero masses and momenta, a typical two-loop
amplitude can be schematically expressed as

d? dd r )T
D— / ql QQ (Q1aQQaM7 v, ) ® B(q17q27,u7 v, ) (36)

) (= mi)™ (63 —m3)"™ (01 — g2)* = m3)™



where I'4 g represent strings of gamma matrices and loop momenta with saturated Lorentz
indices. To simplify the notation, external quark spinors in the amplitude have been
omitted. In the denominator, partial fractioning has been applied in order to express it
in terms of the minimum number of scalar propagators, which is equal to three for a two-
loop calculation with vanishing external momenta. The masses m1 2 3 stand generically for
the different masses entering the calculation, namely the gluino mass Mj, the mean squark
mass M; defined in eq. (B.J]) and, when regularizing with a massive gluon, the gluon mass .

One of the advantages of working with vanishing external momenta is that, once the
loop integration has been performed, the amplitude in eq. (B.6) turns out to be expressed
only in terms of strings of gamma matrices, with either physical (I_’X) ®f§3i)) or evanescent
(ES) ® Eg)) structures, multiplied by scalar functions of the particle masses:

D= Z {ai(m) f(j) ® fg) + bi(m) EX) ® Eg)} (3.7)

The functions b;(m) are not of interest for our purposes, since the evaluation of the Wilson
coefficients at the NLO only requires, according to eq. (R.F), the projections Fi(l) of the
two-loop amplitude on the physical operators. The complete basis of Lorentz invariant
Dirac structures on which we project is given by

fg) ®f(é) :{’Yg@)’)/ﬂ[n 75®7HR5 PL®PL) PL®PR? UgV®U“VL}+{LHR} (38)

where L « R indicates the structures obtained by exchanging left and right projectors.

In order to extract directly from a given amplitude D the coefficients a; of the physical
operators, we used a basis of orthonormal projectors. These are defined as a set of strings
of gamma matrices, Pf(lj ) ® pY ), satisfying the orthonormality conditions

Tr [f(j) PYTY pg>] =5y . (3.9)

In the DRED scheme the traces are computed in four dimensions. In NDR instead, where
gamma matrices are d-dimensional objects, the traces are performed in d dimensions and
the orthonormality conditions (B.9) are required to be fulfilled up to and including terms
of O(e); this is sufficient, since the two-loop amplitude in the present calculation contains
at most 1/e divergences. With these requirements the projectors Pij ) ® P](gj ) are uniquely
defined. The main advantage of using this procedure is that, once the projection is applied
to an amplitude of the form (B.G), the resulting expression only involves scalar integrals.
The number of independent two-loop integrations to be performed is therefore significantly
reduced.

Besides satisfying eq. (B.9), the projectors must be also orthogonal to the evanescent
structures. This requirement ensures that, once the projection is applied to the r.h.s.
of eq. (B.7), no finite contribution coming from the evanescent operators is kept in the
amplitude. This issue is of relevance in the DRED-d scheme, where IR divergences are
dimensionally regularized. In this case, the orthogonality of the projectors to the evanescent
operators is guaranteed by the following observation: all the Dirac structures entering the
evanescent operators in this scheme have uncontracted Lorentz indices and, after the four

,10,



dimensional projections, can only give rise to products of four dimensional g,,, tensors. The
latter, in turn, are orthogonal to the evanescent operators in the DRED scheme defined as
in eq. (B-4), because of the second of eqs. (B.3).

After the projection has been performed, the evaluation of the two-loop integrals is
reduced to computing scalar integrals of the form

I(m1,ma, m3;ny,n2,n3) =
/ diq diqo 1
2m)® (2m)9 (¢f —m3)™ (63 —m3)™ (@1 — q2)2 —m3)"™

(3.10)

This task is greatly simplified by the use of the recurrence relations [[6], which allow
to reduce all scalar integrals of the form (B.10) to a single two-loop master integral,
T(my,ma,m3;1,1,1), besides trivial one-loop tadpole integrals.! The result for the master
integral Z(mq, mg,m3;1,1,1) is given in ref. [R(].

A further step is required when one of the three masses in the denominator of the
integral (B.10) is the gluon mass )\, introduced to regularize IR divergences. As a result
of having implemented the recurrence relations, one finds that the coefficients multiplying
the master integral contain negative powers of A, up to O(1/A*). The master integral itself
must be therefore expanded up to O(A*). After the expansion, all power divergences must
cancel in the amplitude and only logarithmic IR divergences remain, which cancel in the
matching.

The last step, after the projection and the loop integration, consists in expressing the
NLO amplitude in terms of tree-level matrix elements of the operators in the basis (R.9).
This is done by using Fierz rearrangement and color algebra. Note, however, that the
possibility of expressing the amplitude in terms of tree-level matrix elements, up to terms
of O(e), does not occur diagram by diagram. It only holds, in general, for the complete
amplitude. This step already provides, therefore, a useful check of the correctness of the
calculation.

The sum of the UV renormalized and IR regularized NLO diagrams gives, in the
notation of eq. (B.5), the functions Fj(l)7 that represent the main ingredient in the NLO

evaluation of the Wilson coefficients.

4. Calculation in the effective theory

The second step required in the matching procedure is the calculation of the amplitude
in the effective theory and, in particular, of the matrix r defined in eq. (R.4). Using this
equation and introducing the renormalization matrix Z for the operators O;, we can write
the one-loop matrix elements of the renormalized operators as

Oy =3z O =Y (14 3 r)ij (0))©) . (4.1)

J

IThe application of recurrence relations can be automatically performed by using the Tarasov reduction
algorithm [ﬂ, E] implemented in the Mathematica program TARCER [@]

— 11 —



Figure 6: Feynman diagrams contributing at one loop to the four-fermion operator matrix elements
in the effective theory.

We note again that, in the case of the DRED-d regularization setup, the first index 7 of r;;
runs over the evanescent operators too. The reason is that in the presence of dimensionally
regularized IR divergences the renormalized matrix elements of evanescent operators do
not vanish.

Eq. (f.1) shows that the calculation of the matrix 7 involves two steps: i) the deter-

mination of the matrix elements of the bare operators (O,)bare

up to one loop and ii) the
one loop determination of the renormalization matrix Z.

As for the calculation of the bare matrix elements, they receive contributions in the
effective theory only from QCD interactions. The relevant Feynman diagrams are those
represented in figure fi, plus the three diagrams obtained by performing 180° rotations.
Consistency in the matching procedure requires the matrix elements in the effective theory
to be computed between the same set of external states and with the same regularization
procedure for IR divergences adopted in the full theory. Therefore, we have performed
this calculation by choosing massless quarks with zero momentum as external states and
implementing separately the three regularization setups: DRED-d, DRED-A and NDR-A.
Note, in particular, that the bare amplitudes vanish identically at one loop in the DRED-
d scheme, since all loop integrals in this case reduce to tadpole massless integrals which
vanish in dimensional regularization.

Eq. (1) also indicates that the one loop results for the bare matrix elements must be
projected onto the basis of the physical operators. This projection implies a definition of the
evanescent operators. In the DRED regularization scheme the only evanescent operators
entering the calculation are defined to be proportional to the tensor Ag,, of eq. (B.9).
Besides the operators specified in eq. (@), we also find the appearance of the evanescent
operators

EERED = Aguw Jiazpbi Jjaszj ,
EDRED _ g J6tb B (42)

In the NDR scheme, instead, both Dirac and Fierz evanescent operators must be
introduced. Dirac evanescent operators are defined from the orthogonality condition to the
Dirac projectors (see eq. (B.9)),

T |E PY EY PY] =0 (4.3)

The complete list is given in ref. [J]. As for the Fierz evanescent operators, they are defined
without introducing in the four dimensional Fierz relations arbitrary terms of O(e); for

- 12 —



example, the 7,1, ® 4 Fierz evanescent operator reads
EYPR = diy p b7 A — diy b diA Y (4.4)

and similarly for the other gamma structures.

According to eq. (1)), the second ingredient in the determination of the matrix r is the
one-loop calculation of the renormalization matrix Z. This requires again the evaluation
of the Feynman diagrams shown in figure . In this case however, in order to identify
the UV divergences within dimensional regularization, one can either regularize the IR
divergences with a fictitious gluon mass or consider a set of IR finite external states, for
instance off-shell quarks with fixed momentum p.

In both the MS-DRED and -NDR regularization schemes the renormalization matrix
of the physical operators is determined by applying the modified minimal subtraction pre-
scription. Evanescent operators, instead, must satisfy a different renormalization condition.
For IR finite configurations of external states, this condition reads

(Ei(pr)) =0  in the limit d — 4, (4.5)

and holds at any value of the renormalization scale p [RI]. It guarantees that the evanescent
operators do not play any role when going back to four dimensions and can be eventually
removed from the operator basis of the effective Hamiltonian.

The final result for the matrix r defined in eq. (1) depends on several choices done
in the calculation: the external states, the IR regulator (when IR divergences are present)
and the renormalization scheme of the local operators. Thus we end up with three different

DRED—=d ' ,.DRED=A anq NDR=A " Here we only present the results for the differ-

matrices, r
ences Ar between these matrices because, at variance with the r’s, they are independent
of the specific choice of both the external states and the IR regulator. As can be seen from
eq. ([L.1), the matrices Ar provide the relation between operators renormalized in different

schemes. In the case of the MS-NDR and DRED schemes, for instance, this relation reads

<Oi>M_SfNDR _ (1 + Z‘_;ATNDR/DRED>” <Oj>M_SfDRED, (4.6)
ij

NDR/DRED TNDR _

where Ar rPRED " For this matrix we obtain the result

-3 0 0 0 0
0 —13/3-1/3 0 0

ApNPR/DRED _ | g _99/6 7/6 0 0 : (4.7)
0 0 0 —5/3 —3
0 0 0 —7/2-1/6

in the basis Oy, ..., Os of eq. (R.9). Since chirality is conserved by QCD interactions in the
limit of massless quarks, the corresponding matrix for the operators (5172,3 is equal to the
3 x 3 submatrix for Oy 23 in eq. (f.7) and the two sets of operators do not mix.

In addition, we provide the matrix Ar relating the MS-DRED with the so called RI-
MOM scheme in the Landau gauge [RJ. This is useful because this scheme is frequently
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used in lattice QCD calculations of the hadronic matrix elements. This matrix reads:

~2+8m2 0 0

ApPRED/RI 0 Ay 0 |, (4.8)
0 0 DBoxo
with
%7%-%41112 —%—i—%an
Azxz = 28 |, 28 68 |, 44 (4.9)
_j‘i‘? ln2 —§+§1n2
and
13-2In2 1+42In2
Boyo = . (4.10)
1—214-211&2 —%—§1n2

The results in eqs. ({.7) and (J.§) can be also combined to obtain the matrix relating the
MS-NDR with the REMOM scheme: ArNPR/RI — ApNDR/DRED | A DRED/RI

5. Results and checks of the calculation

In the previous sections we have described the calculation of the two ingredients needed to
obtain the Wilson coefficients at the NLO: the LO and NLO amplitudes in the full theory,
F© and FM, and the matrix 7 in the effective theory. The NLO Wilson coefficients are
finally determined using eq. (R.§). They bear a dependence on both the renormalization
scheme and scale. These dependences only arise at the NLO and allow one to perform useful
checks of the calculation. The relations among the results for the coefficients as obtained
in the three regularization setups, DRED-A, NDR-A and DRED-d, will be discussed in
the following subsection. The scale dependence of the Wilson coefficients must satisfy the
renormalization group equation, and this constraint will be addressed in subsection

5.1 Regularization and renormalization scheme dependence

The results for the coefficients obtained in the DRED-\ setup must be equal to those
obtained in DRED-d, since the Wilson coefficients cannot depend on the IR regulator.
Indeed, upon explicit comparison, they are found to be in agreement. We emphasize
that this is a non-trivial check of the calculation. Indeed, whereas the computation in
the DRED-\ scheme presents basically no subtlety, the one in the DRED-d regularization
entails the inclusion in the full theory of the LO contributions up to O(g) and of the
evanescent operators. All these contributions should sum up to reconstruct the results
obtained by using the gluon mass as IR regulator.

The results for the Wilson coefficients obtained in the MS-DRED and NDR renormal-
ization schemes differ because the coefficients are scheme dependent quantities. They can
be compared using the scheme independence of the effective Hamiltonian:

(b, d|Hege|b,d) = > CPRP (b, d|Q; b, d)PREP = CFPR (b, d|Qilb, VPR . (5.1)

7
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The relation between renormalized operators in the two schemes has been written in
eq. (f.6) in term of the matrix Ar. From eq. (p.1]), it then follows that the same ma-
trix also relates the coefficients in different schemes, e.g.

CNDR(M, My, ) = 37 (1= S APNDR/DRED) GDRED(V apy 0), (5.2)
- 7T ji
j
where ArNPR/PRED jg oiven in eq. (7). Notice that in eq. (F-3) the transposed matrix

ArT enters. The coupling constant o, and the SUSY masses M, and My in the previous
equation are also scheme dependent quantities. This dependence starts at O(a ) and must
be taken into account in the matching at the NLO. In order to verify eq. (f.9), therefore,
one needs to express all the couplings in the same scheme. The required relations are [R3]:

GNPR — oPRED (14 Z2(N, - Cr)
MNDR MDRED <1 4 Z_SNC) (5.3)
MNPR — NDRED (1 4 0(a2)) |

where N, = 3 and Cr = 4/3 are the SU(3).. color factors. The strong coupling constant
in eq. (p.3)) indicates the coupling of the quark-squark-gluino vertex. A different relation is
found for the quark-quark-gluon coupling, which differs from &, in the NDR scheme because
this regularization breaks supersymmetry [ (see eq. (A.J)). In the present calculation,
since the shifts expressed by eq. (p.3) are O(a;), they have to be implemented only in the
LO amplitude, where only the coupling & appears. We find that our results for the Wilson
coefficients as obtained in the DRED and NDR schemes consistently satisfy eq. (p.2), with
the matrix ArNPR/DRED given in eq. (7).

5.2 Renormalization scale dependence

Beyond LO, the Wilson coeflicients acquire an explicit dependence on the renormaliza-
tion scale . This dependence is controlled by the renormalization group equation, which
provides therefore an additional check of the calculation.

The renormalization group equation for the Wilson coefficients of the MSSM [p4]
can be written as

[ ) dag, 0 dAM? 9 dM2 Z dAx

8lnu2+dlnu28a5 +dln,u2 aMg dlnu2(9M2 dlnu28AX
1 -
5| e o, (5.4

and takes into account the scale dependence of all the quantities entering the coeflicients,
namely the strong coupling constant «, the squark and gluino masses M, and Mz and the
dimensionful mass insertions Ax, with X = LL, RR, LR, RL.

The matrix v in eq. (f.4) is the anomalous dimension matrix of the four-fermion
operators (R.2) in the effective theory (i.e. QCD). It can be expanded as

dz o
—1 _ G 2
T = 1270+ 0d) (5.5)

Y(as) =
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where, for the LO anomalous dimension g, we obtain the expression

4 0 0 00
0-28/3 4/3 0 0

vw=1|0 16/3 32/3 0 0|, (5.6)
0 0 0 —-160
0 0 0 —62

in agreement with eqs. (11)-(13) of ref. [P(].
The renormalization group equation for the strong coupling constant in the MSSM
reads

ﬁMSSM (Oés) _ daS

2
as
= —dln,u2 = i ﬁ(l)v{SSM + O(Ofg), (5.7)

S

with YSSM = 3N, — Ny
The scale dependence of the squark and gluino masses, M, and My, is described instead
by the equations
1 dM? R

0 . ~
o) = gpqy = -2 +0d) L i=s, (5.8)

where 7)) = 4CpM2/M? and 7)) = 26}55M = 2(3N, — Ny).
Finally, the running of the dimensionful mass insertions A x is expressed by

dALL(RR) 9
dhl/lQ —0+O(Oés)’
dALR(RL) as (o) 9
T2 = 0a Aprrr) + O(a3) (5.9)

with *yg)) = 2CF.
By using the results given in eqs. (5.7)-(b.9), we have then verified that our expressions
for the Wilson coefficients exhibit at the NLO the correct renormalization scale dependence

predicted by eq. (p.4).

5.3 Discussion of the results

We conclude this section by presenting and discussing the final results obtained for the
Wilson coefficients at the NLO. The complete expressions of these coefficients, in the MS-
DRED renormalization scheme, are collected in appendix ]

In order to illustrate the typical size of the computed NLO corrections, we show in
figure ] the values of the NLO contributions to the Wilson coefficients normalized to their
expected size, namely the corresponding LO coefficients multiplied by as(Mj)/7. For the
purpose of illustration, in this comparison we set the scale u = M, and put Mz = M. As
can be seen from the plot, in several cases the NLO coefficients turn out to be larger than
what naively expected. Of course, this conclusion applies to the MS-DRED coefficients
and could change in a different renormalization scheme.

The Wilson coefficients depend on the matching scale g which can be chosen around
a typical SUSY scale, e.g. the average squark mass M. An important achievement of
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Figure 7: Comparison between the LO and NLO contributions to the MS-DRED Wilson coeffi-
cients at the scale u = M and at the reference value My = M. For the coefficients C4 and C5 the
contributions proportional to d;,,0rr and 6, grdrr are shown separately.

the NLO calculation is a significant reduction of this dependence with respect to the LO
approximation. This is illustrated in figure § where we show the LO and NLO predictions
for the Bgz-mesons mass difference Amy as a function of the high-energy scale p chosen for
the matching. These predictions are obtained by adding the SUSY contributions to the
reference SM value, AmSM = 0.496 ps—!. The hadronic matrix elements are evaluated by
using the lattice QCD results of ref. [R7] for the B-parameters and fp, = 189 MeV. We set
My = Mz = 350 GeV and consider two cases for mass insertion coefficients, 617, = drr =
0.12 exp[—i 23°] (upper plot in figure §) and 6.z = dgr, = 0.026 exp[—i 23°] (lower plot in
figure ), chosen to give a SUSY contribution compatible with the present measurement
taking into account the SM uncertainty. Clearly, the reduction of the scale dependence
found at the NLO quantitatively depends on the specific values chosen for the mass insertion
parameters.

From figure § we see that the SUSY prediction for Amg, varies, at the LO, by ap-
proximately +£16% (£8%) in the LL/RR (LR/RL) case, when the scale p is varied in the
typical range between M,/2 and 2M,. With the NLO calculation, the dependence on the
matching scale is reduced by a factor two or more, i.e. at the level of £5% (£2%) percent.

We conclude this section by observing that phenomenological applications require the
knowledge of the hadronic matrix elements. These are usually computed on the lattice
where, in order to perform a fully non-perturbative renormalization, the RI-MOM renor-
malization scheme [P is needed. This is the scheme adopted for instance in refs. [B§, R9]
and [R7], where lattice results for the complete basis of four-fermion operator matrix ele-
ments relevant for K — K and By —§d75 systems have been presented. In these cases, the
results for the Wilson coefficients given in appendix fi] in the MS-DRED scheme must be
converted to the RI-MOM scheme. This can be easily done using the relation analogous
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Figure 8: LO and NLO predictions for the Bg-mesons mass difference Am obtained by adding the
SUSY contributions proportional to 51, rr (top) and épgr,drr (bottom) to the SM prediction.
See text for the reference values of the input parameters. The results are plotted as functions of
the matching scale p.

to eq. (b.9), namely

RI _ Qs . DRED/RI)® ~MS-DRED
=3 (1+ A )ij C! . (5.10)
j
The matrix (ArPRED/ROT which performs the matching between the two schemes can be

obtained by transposing the matrix in eq. (f.§).
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6. Conclusions

In this work we have computed the NLO strong interaction corrections to the Wilson coeffi-
cients relevant for AF' = 2 transitions in the MSSM with the mass insertion approximation.
The complete expressions for the coefficients are given in appendix [A] in the MS-DRED
scheme. We also give in egs. (5.2) and (5.10)) the formulae required to translate the Wilson
coefficients at the NLO from the DRED to the NDR and the RI-MOM renormalization
schemes, which might be useful for phenomenological applications.

Theoretically, the NLO calculation of the Wilson coefficients is required to cancel the
corresponding renormalization scale and scheme dependence of the renormalized operators.
Once combined with the NLO anomalous dimension of the four-fermion operators given
in ref. [§, our results allow to perform a complete NLO analysis of AF = 2 transitions in
the MSSM. The phenomenological analysis will be presented in a forthcoming publication.
In this study we have shown that, by considering as a reference example the theoretical
prediction of the Bg-meson mass difference Amy, the uncertainty due to the choice of the
the high-energy matching scale is largely reduced going from the LO to the NLO, typically
from about 10-15% to few percent.
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A. Results for the Wilson coefficients

In this appendix we collect the complete NLO expressions of the Wilson coefficients en-
tering the effective Hamiltonian which describes AF = 2 transitions mediated by strong
interactions in the MSSM.

We consider the complete basis of four fermion operators given in eq. (R.2)). The
coefficients for the operators Q1,273 are obtained from those of the operators (123 by
simply exchanging L < R in the mass insertion parameters. For this reason, we will not
present in the following their explicit expressions.

The Wilson coefficients are written as
Cilp) = () + V() | (A1)

where 1 is the scale used in the matching procedure. To simplify the notation, in the
following, we will not write explicitly the u dependence of masses and couplings.

The LO calculation of the Wilson coefficients has been performed in ref. [f] and we
agree with their results. These coeflicients read

2 2 3 4 2
0 « 11 133z 13z 29z T 13¢  17x
C} )(,U): s < >logm]5%L

(I —2pMZ|108 7 108 12 108 54\ 18 ' 18
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2 (2892 1722 172 17z* 172 1722
cOy = % — - = log x| 07
> W =gz s 1z 12 Tos T\as e ) e 0k
2 [ 172 22 23 2t x a2
cOy— % |_r r r T [T T, 52
s W=z "3 tT 1 3 (gt ler)on
2 r 2 3
0 o' 11 11z 11z 11z 11z
C’ﬁ)(,u)z q 955]\/_[2 <_ﬁ_?+ G +—54 —T(1+x)logx>5LR(53L+
20
1 N 101z 522 6123 N Tt N 5 N 1922 | o s
9" 18 2 18 18 3 "3 )87 JOLLORR
2 5 b5z 5z bz bx
O, — s B oI A 4 | 1 )
5 107z 1122 1923 a* 11z 1322
= - - = Rt | ) A2
(27+ 54 6 54 +54+<9+ 9>°gx>LLRR] (4.2)

where z = Mg /M? with Mj the gluino mass and M; the average squark mass. The
dimensionless mass insertion parameters are understood to be 0%y, 6¢5, 643 and %, for the
cases of K, By, Bs; and D mixings respectively.

At the NLO, the Wilson coefficients are scheme dependent quantities. Here we present
the results for the operators renormalized in the MS-DRED scheme, and we adopt the same
scheme also for the strong coupling constant as(u) and for the squark and gluino masses.
Eq. (.10) can be then used to convert the coefficients to the RI-MOM scheme, frequently
adopted in lattice QCD calculations of the corresponding hadronic matrix elements. As
for the strong coupling constant and the squark and gluino masses, they can be converted
to their counterparts in the MS-NDR scheme by using [,

NDR DRED as Ne
p— 1 I
s % < 4r 3 >

MYPR — pPRED <1 + Z—;NC) (A.3)
MYPR — PRED (1 4 0(a2)) .

(67

We now present the NLO expressions for the Wilson coefficients. In the following, the
symbol Lis(x) denotes the dilogarithm function defined as

Lis(x) = — /O ) % In(1 — t) (A.4)

and all couplings and masses are understood to be renormalized at the same scale pu. The
coefficients read

3
Wy % o
Cl (:u’) - 7TM52 (1 . .’17)7
,[4171  50197¢ 991122 2503923 273712 31725 725 427
1L + - + - - b
864 | 2592 144 432 2592 96 12 81
s, 1700522 36072 . 4319z . 38752°  5a® . 4a” N .
9 1296 144 1296 1296 9 81 )%
247z 107927 N 372123 N 4972 oo 1 +
72 72 216 216 ) &
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229 691z 67x% 1559z3  224zx*\ .
- + Lio(1 —z) +

“ 08 T 108 T 36 108 27
log (M?) < 11 577 N 109422 23892 12552 N 310z°  191z° L AT 427 N
12 54 108 81 324 324 81 324 81
91z 133z2 93523  529x?
< 36 108 108 108 >1°gx)] (A.5)
1 ag’ 1
O3 (u) = TME A—a)
51y {31182% | 783947x7 N 308057z°  58433z7  39589a° 1409325  34a7 N
3888 3888 1944 1944 3888 3888 81
(1071; N 22852°  5839z° 109z N Ala® 94328 N 34:1:7) g +
9 108 162 81 6 324 81
( 199z 75352° N 586923 N 803a:4) log®  +
216 216 216 72
(_ 191z N 20112*  23032° N 8653:4)Li2(1 2+
18 54 54 54
log (M2) ( 6205z N 1089122 N 207743 9035z N 114112° 245325 N 3427 N
648 648 324 324 648 648 81
(_ 311z 991a° N 25750% 12733:4) gz )] (A.6)
108 108 108 108
1 oz:ff 1
C§Y (u) = 2 (a7
o[ 43993z 10364922 35339z 2147x*  91032°  26632° 227
SRL [— + — + + - +
3888 3888 1944 1944 3888 3888 | 27
(433: 36773: 153723 N 59z 4012  2052° 227 ) oz +
162 27 162 324 27
( 77:1: 1:2 1752% 2839:4) log?z +
216 24 216
(71:1: 385:1: 555749: 9323 )L12(1 C o)+
) < ) (1607:1: 321722 N 2523 N 17452*  23452°  4632° 247
2 648 648 324 324 648 648 27
85z  205x%  605x° 35z
(1_08 T8 T 1w T 12 > log )] (A7)

3
(1) oy 1
Ca(n) = M2 (1—x)7 {

5110 [ 203 39341e 918952 N 337072° 7332 6691a° N 20692° 2827 N
36 216 216 108 18 216 216 27
(31_:1: N 84350  T9272°  2065a" N 49025 3972 N 287 ) g +
12 108 108 108 27 54 27
(_ 43z 18737 N 468723 N 17033:4) log?x +
8 24 72 72
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(@ 2l n 59972 B 162723 n 251z )Lig(l o)+
18 18 6 18
log <M§) (L 461z 41327 N 45292° 1600z N 7109z°  1813z° N 2817 N
w2 J\12 72 216 108 27 216 216 27
( 3z 607 N 10550 421934) log & ﬂ N
4 36 36 36
51 [ 15031 6875z N 33709z%  207472° 16963 N 132972° 2245 N
1296 1296 648 648 1296 1296 81
(163:1: 269777 N 2583123 N 359z 3041z2° N 22:1:6> g +
36 648 648 216 648 81
(1033: N 703z%  4969z° 913:4) log?z +
8 72 216 72
(@ 217z 1322 N 3493 3 18124 )Lig(l _a) 4
108 54 3 54 108
log (MQ) ( 25 N 3257z 3481a° N 136923 N 2683z'  18672° N 2245 N
U2 648 ' 648 324 324 648 648 81
173z 31122 307z 437z
( 108 T 108 36 108 ) log )H (4-8)
3
) = 5 e |
6LL6RR[@ N 6521z 7291327 N 315492%  3193z"  2885a° N 4512°  4a”
36 216 648 324 162 648 648 81
(3619: N 177522 1050547 N 9292 N 1002° 10725 N 4a” > g +
36 108 324 324 27 162 81
( 407z 6532 N 636123 N 1121;1:4> o 2+
72 24 216 216
<@+ 641z 72® 104547 +L’79:4 )Liz(le
54 54 18 54 27
log (MQ) ( 35 1787 N 1376502 40572 370 N 3299z°  451z° N 4a” N
U2 108 216 648 324 81 648 648 81
( 143z 1692” N 13852° 787:1:4> log )} N
36 108 108 108
5 nine [ 5425 12125z N 268752% 2412527 N 10715z* N 14952°  102° N
432 432 216 216 432 432 27
(_ 1550 50954 N 104652°  655z¢  6952° N 103:6) g +
12 216 216 72 216 27
( 75z N 6252°  24552° 85354) o 2 +
8 24 72 24
3 4
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